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Higher brain functions such as cognition, learning, language, attention, and emotion are 
attributed to the formation of highly complex and organized neural circuits associated with an 
increase in cerebral volume. The laminar structures of the cortex provide a fundamental basis 
for integrating information. Two pairs of a synaptic trans-neuronal ligand and receptor, namely 
netrin-G1/-G2 and netrin-G ligand (NGL) 1/2, have likely evolved by genomic duplication as 
vertebrate-specific genes, and have specific roles associated with the cortical laminar 
structures. Remarkably, the netrin-G1 and netrin-G2 genes are expressed in distinct neuronal 
circuits in a complementary manner. Loss-of-function studies of these genes in mice 
demonstrate that presynaptic netrin-G1 and netrin-G2, which are expressed in distinct neuronal 
pathways, constrain specific ligands NGL1 and NGL2 to a specific sub-domain of the 
dendrites of their target neurons, and thus contribute to determine circuit specificity within a 
single neuron. The lack of either netrin-G1 or netrin-G2 results in abnormal synaptic plasticity 
in a circuit-specific manner, and thus causes differential abnormalities in various behavioral 
domains. The retina also has highly elaborated laminar structures and serves as a mini-brain 
model. We revealed complementary expression patterns of netrin-G1/-G2 and NGL1/2 in the 
retina, similar to other brain areas. A lack of presynaptic netrin-G1 or netrin-G2 results in 
abnormal postsynaptic properties in a layer-specific manner. These findings indicate that 
netrin-G/NGL interactions contribute to laminar structure-dependent information processing. 
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We have been investigating the molecular mechanisms that guide the migration of 
cortical interneurons from their origin in the subpallial ganglionic eminences (GE) to the 
neocortex. Numerous molecules such as transcription, motogenic and neurotrophic 
factors have already been demonstrated to play important roles in their migration. Earlier 
studies have suggested that cortical interneurons express neuropilin (Nrp) receptors, 
which enable them to respond to the chemorepulsion produced by class 3 semaphorins 
(Sema3A and Sema3F) expressed in the striatum. This repulsive activity in the 
developing stratum creates an exclusion zone for migrating interneurons and channels 
them into adjacent paths, leading to the formation of their migratory routes into the 
cortex. However, we have discovered that interneurons in Robo1 null mice (Robo1-/-) 
migrate through the striatum en route to the cortex. Our recent studies have indicated that 
Robo1 controls the migration of cortical interneurons by modulating their responsiveness 
to semaphorins. Specifically, we have found, using in vitro assays, that GE cells taken 
from Robo1-/- mice are markedly less responsive to Sema3A and Sema3F and this effect 
is not due to direct interaction between semaphorins and Robo1. Moreover, expression 
studies illustrated specific downregulation of semaphorin receptors (Nrp and plexin) in 
GE-derived cells of Robo1-/- mice. Biochemical studies also demonstrated that Nrp1 is 
able to directly bind to Robo1. Our data demonstrate that Robo1 modulates 
semaphorin-neuropilin/plexin signalling to steer interneurons around the stratum and into 
the cortex. We are currently trying to identify downstream molecules that may be 
involved in this interaction. 
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