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Abstract:    

Oligodendrocyte precursors (OLPs, also known as NG2 cells) are generated in the 
ventricular zones (VZ) of the embryonic central nervous system (CNS), from the same set 
of neuroepithelial stem cells that generated neurons at earlier developmental times.  NG2 
cells subsequently proliferate and migrate widely throughout the CNS before associating 
with and ensheathing axons.  Many NG2 cells persist in the adult CNS, where they 
comprise ~5% of all neural cells, raising questions about their function during adulthood.  
Since they can be induced to generate neurons as well as oligodendrocytes and 
astrocytes in culture, the idea developed that NG2 cells might behave as multipotent 
stem cells during normal adulthood or following CNS disease or injury.  Many labs have 
now examined the fates of NG2 cells in the normal mouse brain or following disease or 
injury, using Cre-lox recombination in transgenic mice.  The conclusion so far seems to 
be that NG2 cells overwhelmingly generate new myelinating oligodendrocytes during 
adulthood.  Early reports that NG2 cells might generate astrocytes or neurons have not 
been upheld.  This draws attention to the role of new myelinating cells in the healthy adult 
CNS.  Do these myelinate previously unmyelinated axons, or do they remodel existing 
myelin?  Are new oligodendrocytes and myelin involved in neural plasticity – for example, 
motor skills learning and memory?  These ideas and experiments to test them will be 
discussed. 
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Molecular Mechanisms of Barrel Cortex Development 
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In the mouse primary somatosensory cortex (barrel cortex), thalamocortical axons 
(TCAs) from individual thalamic barrelloids are almost entirely confined to single barrel 
clusters, followed by arrangement of cortical layer IV neurons into barrel hollows and 
septa during early postnatal stage. Furthermore, spiny stellate neurons in barrel hollows 
form unidirectional dendrite toward barrel TCAs during first postnatal week for efficient 
synapse formation. To elucidate the molecular mechanism of unique dendrite 
development, we searched for genes expressed in the barrel cortex using Allen Brain 
Atlas.  As a consequence, we identified Btbd3, BTB/POZ domain containing 3, is 
expressed exclusively in barrel hollow.  BTB/POZ domain mediates 
homomeric/heteromeric dimerisation and its family member, Abrupt, controls dendrite 
formation in Drosophila (ref 1 and 2). Therefore, we tested Btbd3 function in spiny 
stellate dendrite formation and revealed that suppression of Btbd3 is efficient to 
generate more numbers of primary dendrite.  We also revealed that initial expression of 
Btbd3 is induced by TCA innervation that suggests correct synapse formation control 
gene expression in postsynaptic neuron.  We further tested whether this induction of 
Btbd3 expression is controlled by neuronal activity. However, no difference of Btbd3 
expression was observed in neuronal activity suppressed somatosensory cortex.  We 
next performed microarray analysis from neuronal activity suppressed barrel cortex and 
isolated molecule, which has BTB/POZ domain in its internal sequence.  These results 
suggest that dendrite formation of spiny stellate cells is controlled by dimerization of 
both molecules induced by neuronal activity independent Btbd3 expression and 
neuronal activity dependent gene expression.  Taken together, our results provide 
molecular framework of activity dependent/independent circuit development. 
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We are asking how neural stem cells’ morphology is regulated three-dimensionally and how 
this regulation contributes to continuous cell production and the overall brain formation. 
Stem cells in the mammalian brain primordia originally take a neuroepithelial structure in 
which their nuclei diffusely occupy the entire wall (about ten nuclei thick) of the neural tube 
or brain vesicle. This diffuse nuclear distribution is due to the cell cycle-dependent, to-and-
fro nuclear movement (called interkinetic nuclear migration) exhibited by each 
neuroepithelial cell (80 μm long), which spans from the apical (inner) surface to the basal 
(outer) surface of the wall. When the first neuronal group comes out as a result of divisions 
within the initial neuroepithelium, neurons accumulate in an outer zone (1-2 cell thick) just 
beneath the basal lamina and stem cells become longer (90-100 μm). The elongated stem 
cells keep their apicobasal attachment as well as nuclear migration trajectory in a range of 
80 μm (ten nuclei thick) with a basal process (~20 μm) extended. Stem cells’ elongation 
coupled with maintenance/renewal of basal processes further continues as the wall thickens. 
How this elongation occurs is unknown and it is important to understand whether and if so 
how this phenomenon might affect stem cells’ cytogenetic behavior. Through in vivo RNAi 
experiments and live imaging in slice culture, we found that the earliest cohort of neurons in 
the developing mouse neocortex may play an important role in extrinsically shaping the 
neural stem cells. 

 

Miyata, T., and Ogawa, M.: Twisting of neocortical progenitor cells underlies a spring-like 
mechanism for daughter-cell migration. Curr．Biol. 17, 146-151 (2007) 

Miyata, T., Kawaguchi, A., Saito, K., Kawano, M., Muto, T., and Ogawa, M.: Asymmetric 
production of surface-dividing and non-surface-dividing cortical progenitor cells. 
Development 131, 3133-3145 (2004) 

Miyata, T., Kawaguchi, A., Okano, H., and Ogawa, M.: Asymmetric inheritance of radial 
glial fibers by cortical neurons. Neuron 31, 724-741 (2001)
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 The Sylvian fissure (SF), dividing frontal and parietal lobes from the temporal lobe, is remarkably enlarged in humans, but is indistinct in non-primates. Despite the signal importance of perisylvian cortex, which mediates crucial human cognitive functions including language, it is completely unknown how development and evolution of these regions is regulated. Here, we identify a conserved noncoding DNA element (CNE) critical for perisylvian cortex development. Mutation of the CNE selectively and symmetrically disrupts perisylvian cortex, including “Broca’s area,” the primary language area. The CNE is present only in placental mammals, with its associated exon showing the signature of an ancient L4 retrotransposon insertion after divergence of placental and non-placental mammals. The CNE represents one of ~17 promoters for the GPR56 gene, and the CNE mutation disrupts interaction with RFX transcription factors, ablating the promoter activity. GPR56, a G protein-coupled receptor essential for cortical development, mediates adhesion between cortical progenitors and the basal lamina. When fused to the beta-galactosidase gene (β-gal), the human CNE drives gene expression in mice in a sharply delineated lateral cerebral cortical zone, representing a potential orthologue of human perisylvian cortex, whereas the corresponding mouse CNE drives expression diffusely in cerebral cortex. Evolutionary differences between the mouse and human CNE also shift gene expression from apical progenitors, common to all vertebrates, to SOX2+TBR2- outer subventricular zone (OSVZ) progenitors that are absent from non-placental vertebrates, rare in mice, and most abundant in humans. Our data show that perisylvian development requires an evolutionarily dynamic CNE, and suggest that modulation of GPR56 expression in OSVZ progenitors by this CNE may play important roles in development and evolution of perisylvian cortex. Our study also represents a potential starting point to identify transcriptional programs regulating development of OSVZ progenitors in distinct cortical regions. 
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In the human brain, there are structures that have been conserved through 
evolution, as well as structures that are unique to only primates, acquired through the 
enlargement of the cerebral cortex. The clarification of these types of structure and their 
fundamental brain functions is required to properly understand the normal brain 
functioning of humans, as well as mental health, and illnesses caused by abnormal brain 
functioning. Existing research on the operating principles of the brain, however, has 
suffered from the biases and limitations of information derived from animal 
experiments. Many were optimistic that the complementary nature of genetic 
engineering techniques, which focus on rodents and fish, and cognitive neuroscience 
techniques, which focus on primates, would lead to progress in this area. However, 
results have been disappointing, with few practical or theoretical connections between 
these techniques having developed. 

Recently, however, a connection has finally been made with the success of our 
team in creating the world's first transgenic primate using marmosets. This 
technological breakthrough promises to trigger a huge paradigm shift by enabling 
researchers to analyze both brain structures that are conserved through evolution as well 
as brain structures, acquired through the enlargement of the cerebral cortex, that are 
unique to non-human primates and humans.  

In this talk, I will present not only marmoset research, but also patient-derived 
iPS cell results, discussing neural development and regeneration from a viewpoint of 
stem cells. 
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He performed pioneering work on the molecular genetic study of mammalian neural 
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Chemistry in Johns Hopkins University School of Medicine in U.S.A. From 1992 to 1994, 
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